Research Areas

Click titles for projects pages

Thumb-Resonant Cavity Wireless Power

Resonant Cavity Enabled Wireless Power Transfer

Wireless power technology is typically limited to 1-D charging cradles and 2-D charging pads. In this work we explore means of providing power to large 3-D volumes of space using the natural electromagnetic modes of hollow metallic structures to produce uniform magnetic fields, which can simultaneously power multiple receivers contained nearly anywhere inside.

4 Papers
2 Video
8 Featured Press
Thumb-NCF-WISP

Interactive RFID

UHF RFID tags offer a minimalistic means of instrumenting everyday objects. By monitoring changes in the low level communication channel parameters between the tag and reader it is possible to turn an RFID tag in to an ultra low cost, paper thin, battery free sensor. Applications include passive activity inferencing, interactive physical objects, and human robot interaction.

1 Award
4 Papers
4 Video
7 Featured Press
Thumb EM-Sense

EM-Sense & EM-ID

EM-Sense & EM-ID exploits the unintentional electromagnetic (EM) noise emitted by many everyday electro-mechanical objects. These signals tend to be highly characteristic, owing to their different internal operation and variations in manufacturing. Our wearable platform is able to robustly classify the object type and determine its individual identity from a database in real-time.

3 Award
2 Papers
1 Video
10 Featured Press
Thumb Energy Harvesting Node

Energy Autonomous Sensing and Computing Systems

This project encompasses a number of efforts in developing energy harvesting, battery free sensing systems that can be easily embedded into everyday objects and thus allowing for near perpetual operation. Topics include ambient energy harvesting techniques, platform architecture and power management, and debugging tools that deal with intermittent power.

4 Papers
1 Video
Tech Transfer
Thumb-NCF-WISP

NFC-WISP

The NFC-WISP is a wirelessly powered near-field RFID platform that is enhanced with onboard computing, sensing capabilities, and an E-ink display. This open-source platform is also compliant with NFC RFID readers commonly found in handheld devices and smart phones and offers designers and researchers a means to rapidly develop custom NFC applications.

3 Award
3 Papers
2 Video
Open Source
Thumb-NCF-WISP

Free-range Resonant Electrical Energy Delivery (FREE-D)

The FREE-D system uses magnetic coupled resonance to efficiently transfer power wirelessly to implanted heart pumps known as LVADs. The use of wireless power eliminates the need for the transcutaneous driveline, which is the leading cause of LVAD complications and patient re-hospitalization.

2 Award
7 Papers
1 Video
8 Featured Press
Thumb-WARP

Wireless Ambient Radio Power (WARP)

Radio frequency signals provide a near ubiquitous energy source due to the large number of TV, radio, cellular, and WiFi transmitters throughout our urban environments. The Wireless Ambient Radio Power (WARP) project harvests and converts these signals into power for use in an variety of applications.

3 Papers
1 Video
3 Featured Press
WREL

Wireless Resonant Energy Link (WREL)

This project explores the use of magnetically coupled resonators to safely deliver 10s-100s of watts of power wirelessly to receivers. Our key contribution is the development of adaptive tuning techniques that enable near constant power transfer efficiency, as a function of varying transmitter-to-receiver range and orientation as well as changes in the loads power consumption.

6 Papers
3+ Video
2 Tech Transfer
7 Featured Press
Thumb-NCF-WISP

Wireless Identification and Sensing Platform (WISP)

The WISP is a programmable, battery-free sensing and computing platform designed to explore sensor-enhanced UHF RFID applications. This open-source platform communicates with and harvests all its power from commercially available UHF RFID readers. As part of Intel Research’s WISP Challenge 500 WISPs have been donated to over 50 universities worldwide.

4 Award
15 Papers
2 Video
Open Source Tech Transfer
Thumb-NCF-WISP

Robotic Cable Inspection System

The cable inspection robot is designed to autonomously navigate power distribution lines in search of incipient faults. The goal is to provide estimation on the remaining lifetime of the power cable to enable cost effective maintenance practices. The diagnostic sensor array includes thermal, visual, dielectric, and acoustic sensors.

2 Papers
1 Video