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Abstract—This work provides a method of wireless power
transfer that uses the resonant modes of a metallic cavity to
deliver power to a small dipole nearly anywhere within the
structure. We derive an expression for the coupling coefficient
between the ~E-fields of the cavity mode and the dipole, and
then validate the analytic model via finite element simulations.
Lastly, we use the results for the coupling coefficient to predict
the wireless power transfer efficiency as the dipole is moved
throughout the chamber.

I. INTRODUCTION

Typical wireless power transfer (WPT) configurations use
coupled coil resonators to transfer power via magnetic
fields [1]. One limitation is that source and receiver need to
be close together to achieve efficient WPT (< 1 coil diameter
apart). An alternative WPT system [2] uses resonant modes
of an enclosed metallic cavity to uniformly illuminate large
portions of the structure with electromagnetic energy, which
can be received nearly anywhere within the cavity. Thus,
the volumes of space where WPT is efficient can be ex-
tended beyond conventional coupled-coil WPT systems. In [2],
however, the cavity-to-receiver coupling via the electric field
was neglected. Here, analytic calculation and Finite Element
Method (FEM) simulation are used to investigate WPT via
coupling of the electric field to a small dipole receiver. First,
we derive an expression for the coupling coefficient, then use
it to compute an upper bound on the expected WPT efficiency.
These results provide a tool for rapid exploration of what
efficiencies can be expected for a dipole receiver in a given
orientation, interacting with a particular cavity mode.

II. DERIVATION OF THE COUPLING COEFFICIENT

We start with coupled mode theory (CMT) definitions, and
while generic for now, these definitions will later be used
to determine the coupling between a cavity resonator and
a subwavelength dipole. Each resonator is defined to have
resonant frequency and amplitude, ω1, a1 and ω2, a2 (with
ω1,2 = 2πf1,2), respectively, and that they have the time
dependence exp(jω1,2t). The two resonators are coupled via
a coupling coefficient: κ12 = κ∗21 ≡ κe (here, ∗ indicates
the complex conjugate). Lastly, using CMT, a1,2 are defined
such that their stored energy is: Energy = |a1,2|2. Using these
definitions, it can be shown [3] that power fed from resonator
one into resonator two (P21) must be equal to the time rate of
change of energy in resonator two [4]:
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Fig. 1. (a) Setup of the cavity to dipole system analyzed in this work.
(b) Simple circuit illustrating electric (capacitive) coupling between cavity
resonator and resonant dipole. (c) Norm of electric field, | ~E|, of modes
analyzed in this work. Color: red, large; blue, small.
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The next step is to derive P21 for the cavity-to-antenna
coupled mode system presented here. First, the power, P21,
flowing from resonator one (the cavity mode) into resonator
two (the dipole with additional inductor such that an LC
resonator is formed) is derived. The physical setup is shown
in Fig. 1(a) for a cavity with dimensions a × b × d and a
dipole contained within that has length S and axis ~r. Here
coupling via the magnetic field will be neglected. First, note
that the general capacitive coupling between cavity and dipole
resonators can be captured via the simple circuit model in
Fig. 1(b), where Cm is an abstract element present to capture
capacitive coupling process via electric fields. Thus the power
flowing from the chamber to the dipole can be written in terms
of the charges of each of the capacitors:

P21 = v2Cm
d(v1 − v2)

dt
=
σ2

C2

d(σ1 − σ2)

dt
(2)

where σ1,2, is the total charge on each of the resonators’
effective capacitors, C1,2. In the rightmost expression in (2) we
have used σ2 = C2v2, where C2 is the effective capacitance
looking into the feed-point of the dipole (the dipole reactance
looks capacitive if it is small compared to a wavelength, as in
this work).

Next, σ1,2 is reformulated in terms of q1,2 – the time
dependent complex envelope functions of the charges:

σ1,2(t) =
q1,2e

jω1,2t + q∗1,2e
−jω1,2t
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Then, substituting (3), into (2), and then making the as-


